Is your first-line technology for detecting endometrial abnormality effective?

Disposable sampling devices obtain a sample from only 4% of the endometrial surface area,\(^1\) and fail to detect 1 in 6 endometrial cancers.\(^2\)

In-office endometrial sampling is a cost-efficient method for first-line diagnosis of abnormal uterine bleeding (ABU). However, published studies demonstrate that existing suction curette devices do not provide consistent specimen volume or quality, and insinuate the cause may be due to sampling tissue through a single, small port. Consequently, false negative assessment often occurs in patients with focal pathology.

EndoCurette

Excellent Results for Diagnosis of AUB

EndoCurette uses four bowed curetting elements to remove endometrium independent from the orientation of the four elongated sampling ports. This patented\(^3\) configuration is most effective with a single fundus-to-os draw with a twisting motion. EndoCurette obtains robust tissue samples with intact glands and stroma, often providing first-pass definitive diagnosis of abnormal bleeding.

Experience using EndoCurette and see what you've been missing!

1. Rodriguez GC et al., A comparison of the Pipelle device and the Vabra aspirator as measured by endometrial denudation in hysterectomy specimens: The Pipelle device samples significantly less of the endometrial surface than the Vabra aspirator, Am J Obstet Gynecol 1993;168:55-9
3. U.S. Patent Number 5,807,282; Licensed from Mayo Clinic

- Patented\(^3\) multi-port tip configuration is designed to obtain a sample representative of a majority of the endometrial surface to improve detection of focal pathology.
- Deliberate fundus-to-os sampling motion prevents patient discomfort and risk of trauma by eliminating repeated fundal contact of tip.
- Tip profile, vacuum plunger, and cannula rigidity provide stiffness that facilitates insertion and may help provide access through mildly stenotic cervix.
- 3mm diameter minimizes patient discomfort.